44 research outputs found

    Comparison of Breast Cancer Molecular Features and Survival by African and European Ancestry in The Cancer Genome Atlas

    Get PDF
    Importance: African Americans have the highest breast cancer mortality rate. Although racial difference in the distribution of intrinsic subtypes of breast cancer is known, it is unclear if there are other inherent genomic differences that contribute to the survival disparities. Objectives: To investigate racial differences in breast cancer molecular features and survival and to estimate the heritability of breast cancer subtypes. Design, Setting, and Participants: Among a convenience cohort of patients with invasive breast cancer, breast tumor and matched normal tissue sample data (as of September 18, 2015) were obtained from The Cancer Genome Atlas. Main Outcomes and Measures: Breast cancer–free interval, tumor molecular features, and genetic variants. Results: Participants were 930 patients with breast cancer, including 154 black patients of African ancestry (mean [SD] age at diagnosis, 55.66 [13.01] years; 98.1% [n = 151] female) and 776 white patients of European ancestry (mean [SD] age at diagnosis, 59.51 [13.11] years; 99.0% [n = 768] female). Compared with white patients, black patients had a worse breast cancer-free interval (hazard ratio, HR=1.67; 95% CI, 1.02-2.74; P = .043). They had a higher likelihood of basal-like (odds ratio, 3.80; 95% CI, 2.46-5.87; P < .001) and human epidermal growth factor receptor 2 (ERBB2 [formerly HER2])–enriched (odds ratio, 2.22; 95% CI, 1.10-4.47; P = .027) breast cancer subtypes, with the Luminal A subtype as the reference. Blacks had more TP53 mutations and fewer PIK3CA mutations than whites. While most molecular differences were eliminated after adjusting for intrinsic subtype, the study found 16 DNA methylation probes, 4 DNA copy number segments, 1 protein, and 142 genes that were differentially expressed, with the gene-based signature having an excellent capacity for distinguishing breast tumors from black vs white patients (cross-validation C index, 0.878). Using germline genotypes, the heritability of breast cancer subtypes (basal vs nonbasal) was estimated to be 0.436 (P = 1.5 × 10−14). The estrogen receptor–positive polygenic risk score built from 89 known susceptibility variants was higher in blacks than in whites (difference, 0.24; P = 2.3 × 10−5), while the estrogen receptor–negative polygenic risk score was much higher in blacks than in whites (difference, 0.48; P = 2.8 × 10−11). Conclusions and Relevance: On the molecular level, after adjusting for intrinsic subtype frequency differences, this study found a modest number of genomic differences but a significant clinical survival outcome difference between blacks and whites in The Cancer Genome Atlas data set. Moreover, more than 40% of breast cancer subtype frequency differences could be explained by genetic variants. These data could form the basis for the development of molecular targeted therapies to improve clinical outcomes for the specific subtypes of breast cancers that disproportionately affect black women. Findings also indicate that personalized risk assessment and optimal treatment could reduce deaths from aggressive breast cancers for black women

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

    Get PDF
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved

    Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.

    Get PDF
    Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types

    Get PDF
    Protein ubiquitination is a dynamic and reversible process of adding single ubiquitin molecules or various ubiquitin chains to target proteins. Here, using multidimensional omic data of 9,125 tumor samples across 33 cancer types from The Cancer Genome Atlas, we perform comprehensive molecular characterization of 929 ubiquitin-related genes and 95 deubiquitinase genes. Among them, we systematically identify top somatic driver candidates, including mutated FBXW7 with cancer-type-specific patterns and amplified MDM2 showing a mutually exclusive pattern with BRAF mutations. Ubiquitin pathway genes tend to be upregulated in cancer mediated by diverse mechanisms. By integrating pan-cancer multiomic data, we identify a group of tumor samples that exhibit worse prognosis. These samples are consistently associated with the upregulation of cell-cycle and DNA repair pathways, characterized by mutated TP53, MYC/TERT amplification, and APC/PTEN deletion. Our analysis highlights the importance of the ubiquitin pathway in cancer development and lays a foundation for developing relevant therapeutic strategies. Ge et al. analyze a cohort of 9,125 TCGA samples across 33 cancer types to provide a comprehensive characterization of the ubiquitin pathway. They detect somatic driver candidates in the ubiquitin pathway and identify a cluster of patients with poor survival, highlighting the importance of this pathway in cancer development

    Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics

    Get PDF
    The Cancer Genome Atlas (TCGA) has catalyzed systematic characterization of diverse genomic alterations underlying human cancers. At this historic junction marking the completion of genomic characterization of over 11,000 tumors from 33 cancer types, we present our current understanding of the molecular processes governing oncogenesis. We illustrate our insights into cancer through synthesis of the findings of the TCGA PanCancer Atlas project on three facets of oncogenesis: (1) somatic driver mutations, germline pathogenic variants, and their interactions in the tumor; (2) the influence of the tumor genome and epigenome on transcriptome and proteome; and (3) the relationship between tumor and the microenvironment, including implications for drugs targeting driver events and immunotherapies. These results will anchor future characterization of rare and common tumor types, primary and relapsed tumors, and cancers across ancestry groups and will guide the deployment of clinical genomic sequencing

    Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas

    Get PDF
    We analyzed 921 adenocarcinomas of the esophagus, stomach, colon, and rectum to examine shared and distinguishing molecular characteristics of gastrointestinal tract adenocarcinomas (GIACs). Hypermutated tumors were distinct regardless of cancer type and comprised those enriched for insertions/deletions, representing microsatellite instability cases with epigenetic silencing of MLH1 in the context of CpG island methylator phenotype, plus tumors with elevated single-nucleotide variants associated with mutations in POLE. Tumors with chromosomal instability were diverse, with gastroesophageal adenocarcinomas harboring fragmented genomes associated with genomic doubling and distinct mutational signatures. We identified a group of tumors in the colon and rectum lacking hypermutation and aneuploidy termed genome stable and enriched in DNA hypermethylation and mutations in KRAS, SOX9, and PCBP1. Liu et al. analyze 921 gastrointestinal (GI) tract adenocarcinomas and find that hypermutated tumors are enriched for insertions/deletions, upper GI tumors with chromosomal instability harbor fragmented genomes, and a group of genome-stable colorectal tumors are enriched in mutations in SOX9 and PCBP1

    Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types

    Get PDF
    Hotspot mutations in splicing factor genes have been recently reported at high frequency in hematological malignancies, suggesting the importance of RNA splicing in cancer. We analyzed whole-exome sequencing data across 33 tumor types in The Cancer Genome Atlas (TCGA), and we identified 119 splicing factor genes with significant non-silent mutation patterns, including mutation over-representation, recurrent loss of function (tumor suppressor-like), or hotspot mutation profile (oncogene-like). Furthermore, RNA sequencing analysis revealed altered splicing events associated with selected splicing factor mutations. In addition, we were able to identify common gene pathway profiles associated with the presence of these mutations. Our analysis suggests that somatic alteration of genes involved in the RNA-splicing process is common in cancer and may represent an underappreciated hallmark of tumorigenesis

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although the MYC oncogene has been implicated in cancer, a systematic assessment of alterations of MYC, related transcription factors, and co-regulatory proteins, forming the proximal MYC network (PMN), across human cancers is lacking. Using computational approaches, we define genomic and proteomic features associated with MYC and the PMN across the 33 cancers of The Cancer Genome Atlas. Pan-cancer, 28% of all samples had at least one of the MYC paralogs amplified. In contrast, the MYC antagonists MGA and MNT were the most frequently mutated or deleted members, proposing a role as tumor suppressors. MYC alterations were mutually exclusive with PIK3CA, PTEN, APC, or BRAF alterations, suggesting that MYC is a distinct oncogenic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such as immune response and growth factor signaling; chromatin, translation, and DNA replication/repair were conserved pan-cancer. This analysis reveals insights into MYC biology and is a reference for biomarkers and therapeutics for cancers with alterations of MYC or the PMN. We present a computational study determining the frequency and extent of alterations of the MYC network across the 33 human cancers of TCGA. These data, together with MYC, positively correlated pathways as well as mutually exclusive cancer genes, will be a resource for understanding MYC-driven cancers and designing of therapeutics
    corecore